Texture Detect on Rotary-Veneer Surface Based on Semi-Fuzzy Clustering Algorithm
نویسندگان
چکیده
The texture of rotary-veneer can interference in defects detection, this paper presented a modified semi-fuzzy clustering (SFC) algorithm. SFC algorithm incorporates Fisher discrimination method with fuzzy theory using fuzzy scatter matrix. By iteratively optimizing the fuzzy Fisher criterion function, the final clustering results are obtained. SFC algorithm exhibits its robustness and capability to obtain well separable clustering results. This algorithm can detect the texture and defects on rotary-veneer surface exactly.
منابع مشابه
Semi Supervised Approach Based Brain Tumor Detection with Noise Removal
Brain tumor detection and segmentation is the most important challenging and time consuming task in the medical field. In this paper, Magnetic Resonance Imaging (MRI) sample image is considered and it is very useful to detect the Tumor growth. It is mainly used by the radiologist for visualization process of an internal structure of the human body without any surgery. Generally, the Tumor is cl...
متن کاملFuzzy Possibility C-Mean Based on Mahalanobis Distance and Separable Criterion
The well known fuzzy partition clustering algorithms are most based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm, were developed to detect non-spherical structural clusters, but both of them based on semi-supervised Mahalanobis distance needed additional prior in...
متن کاملON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...
متن کاملLeaf classification using multiple feature analysis based on semi-supervised clustering
Multiple features such as the margin, the shape and the texture of plant leaves are of great importance for classification of plant species, as they are often regarded as the unique features to identify plants. In this paper, we study the performance of a recently proposed semi-supervised fuzzy clustering algorithm with feature discrimination for leaf classification, based on features generated...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کامل